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ABSTRACT 

We derive estimates of the effects produced by internal waves in 

the ocean on coherent spatial and temporal processing of acoustic signals 

based on the empirical Garrett-Munk GM75 internal wave spectrum. We 

present results for horizontal and surface limited rays, for point and 

array receivers, and for stationary and moving sources. 
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I.   INTRODUCTION 

This report addresses itself to the question of what limits sound speed 

fluctuations In the ocean place on the dimensions and Integration times of 

acoustic arrays. We shall for the present defer any discussion of advanced 

processing techniques, and confine ourselves to the simple case of an array 

that measures incident intensity from various angles by adding linearly varying 

phase shifts to the hydrophones in the array, and by integrating the received 

signal over some period of time.  We Investigate at what array dimensions and 

at what Integration time coherent processing is destroyed by sound speed 

fluctuations induced by the ocean medium.  The results obtained for this 

siv.uation will serve as a convenient baseline against which to measure the 

improvements that may be obtainable through the use of more sophisticated 

processing techniques. 

II.  COHERENT PROCESSING AND THE PHASE STRUCTURE FUNCTION 

Let us assume that we have a receiver consisting of a vertical rectangular 

array of hydrophones of horizontal and vertical lengths y and z with a density 

Of n hydrophonas per unit area.  Let us further assume that there is a source 

located at a horizontal bearing angle 6r (relative to the array normal) emitting 

an acoustic frequency an.  Then in the absence of perturbations Induced by the 

ocean, the receiver would pick up a signal 

N   , . Y  Z   T    iqy(sine -sine)  -l(a.-a)t 
I    ^a) / dy / dz / dt e      0     e   0 (2.1) 

a=l     0   0   0 

if it Integrates for a time T at a frequency a and is looking in the horizontal 

direction 6.  Here a  indexes the different acoustic rays along which the signal 

(a) 
can travel from source to receiver and ty        is  the comp ley,  jignal associab •! 

with ray a. The acoustic wave number q is defined by q = c/a« where c is the 

sound speed at the receiver. 

1 
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In general, the ocean medium through which the signal travels will disturb 

the received signal so that the signal associated with each ray path a  will 

(a) 
vary from one hydrophone to another, and will vary with time. Thus $r ' becomes 

replaced by i|)  (x,t), and hence, when averaged over an ensemble of oceans, the 

received intensity from direction 6 at frequency a will be 

„    Y   Y   Z   Z   T   T 
(1(6,0)) = n ^  / dy / dy'/ dz / dz'/ dt /dt' 

aa'O   0   0   0   0   0 

iq(Sine0-sine)(y-y') -i(a0-a)(t-f)        ,*(«•),,.  r,. 

(2.2) 

The fluctuations induced by the ocean along two different rays are inde- 

pendent.  Hence (^   v   ) =   {ty       )   iv ) for a -^ a'.  These averages are 

-1/2 <J.(a)2 -1/2 4.(a,)2- - 
proport ^nal to e e (see Ret". 1).  When the fluctuations 

2        2 
(a)      (a') 

are la*ge $    and $     are large and terms with a ^ a' contribute little 

1) 

to the received intensity. 

For terms with a = a' we have/ 

^(a)(^t)%(a)(^,t')>= I(a> e-h    D(*-*'. ft'), 

where D is the phase structure function and I ^  is the intensity average of 

ray a.  To a good approximation D is independent of ray and we shall assume this 

henceforth.  Thus 
-. -(a) 

a     0   0 
<I(9,a)> = n" I  IW / dy / dy' / dz / dz' / dt / dt, 

0 0 0 

iq(sin0o-sine)(y-y') -i(a0-a) (' -t') -h    D^-x', t-tf) , 
e e e 

(2.3) 

and our problem is reduced to the study of the behavior of D. 

Before proceeding to do this, however, let us anticipate what we will 

learn about D to give an estimate of when coherent processing fails. 
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First, we note that as either the spatial or temporal separations go to 

2      2 
infinity, D ->- 2$ where $ is the parameter defined in Ref. 1, and which 

coincides with the mean square phase fluctuation along a ray when the fluctuation 
2 

is small.  Thus $ sets the basic scale of D. 

2 
If * is sufficiently small, then D is everywhere small and there is no 

limit on coherent processing.  To make a numerical estimate of when this occurs, 

we note  that for an axis ray 

\50 
U2 (-M 

Hz/    \300 km/ 

where R is the propagation range and v is the acoustic frequency.  The region 
2 

in R and v where $ < 1, where coherent processing is always valid, is shown 

in Fig. 1. 

2 
When R and v are such that 9    > 1, limits on coherent processing become 

meaningful.  In this case only small spatial or temporal receiver separations 

are relevant and (as will be shown later) D is essentially quadratic in the 

reparations.  Hence, taking for simplicity the case of a point receiver inte- 

grating over time, we may set 

D(0,t-f) = $2 (^V (2.4) 

where T is some characteristic time.  With this form for D, we may now evaluate 

the integral in (2.3) (for 9= 6-, a = a ) and we find 

T  T     - J- D(0,t-t') 
(I(T)) = / dt/ df e 

0  0 

T /lit m  , 
—     T large 

2 
T      T small (2.5) 

A schematic plot of the integral as a function of T is shown in Fig. 2. The 

dotted line represents the true behavior, interpolating smoothly between the two 

asymptotic expressions given in eq.(2.5). A reasonable definition of where 

3 
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coherent processing fails is where the two asymptotic forms meet; this occurs 

at T = TV^T/O.  At this value of T, D(0,T) = 2»,  Thus we shall use D = 2TT 

as our criterion for the failure of coherent processing. 

HI. GENERAL FORMULAE FOR THE PHASE STRUCTURE FUNCTION 

The calculation of the phase structure function D can be carried out as follows. 

The most gei^.ral situation is one in which we are comparing two rays joining two 

distinct sources to two distinct receivers, (Fig. 3). We shall label the rays 

1 and 2; ray 1 joins a source at xsl to a receiver at xR1 and ray 2 connects a 

source at xS2 to a receiver at J^. Let x1 and x2 be horizontal distance along 

rays 1 and 2 respectively; then (x^y^x^. z^)) and (x2,y2(x2), z^x,,)) denote 

points on the two rays.  We therefore have (x^.y^x^). z^x^)) = (^.y^.e^) 

and (x^py^Xj^), z1(xR1)) = (^»ygj^Zjn) i with analogous expressions for ray 2. 

The phase structure function for these two rays is defined by 

D(l,2) -, <(q  /  ^ds - q  /  ^ds)2) 
ray 1 C       ray 2 C 

(3.1) 

In Ref. 1 it is shown that when the two rays are not far apart, and when the 

sound-speed fluctuations are dominated by internal waves, (3.1) may be replaced by 

D(l,2) = 2 / dx / dk / do) F(k>ü)? z(x)) 

[1 - cosAt cos(k Ay(x) + k Az(x))]  . 
y     2 (3.2) 

where Ay(x) and Az(x) are the horizontal and vertical separations of the two 

rays at a horizontal distance x along the rays, and At = t -t is the time 

separation of the rays, and F(k,(D; z(x)) .'.s the Internal-wave spectrum. The 

spatial separations of source and receiver come in through the boundary conditions 

on Ay(x) and Az(x): 

 ^^^J .  iÄai 



Ay(0) - ysl - ys2 H Ys.  Ay(R) = yR1 - yR2 S YR 

Az(0) = zsl - zs2 + tane(0)(xsl-xs2) = Zg + tane(0)Xs , 

Äz(R) = zR1 - zR2 + tane(R)(xR1-xR2) = ZR + taneCR)}^ . 

Since the deterministic sound speed c(z) varies only vertically, we have an 

explicit expression for Ay(x), namely: 

:; 

j; 

Ay(x) = Ys + (YR - Ys) x/R 

The quantity Az(x) is defined as the solution of the differential equation 

(3.3) 

Az(x) + -\ M-y c(z(x)l Az(x) = 0 . , (3.4) 
dx        c" Ldz' 

subject to the boundary conditions given above. 

As an illustration, suppose the sound channel is parabolic: c(z) = 

2-2 
c + 1/2 K (z-z) , where z is the sound channel depth.  Then the differential 

equation for Az(x) has the solution 

Az(x) ■ 
(ZD+tane(R)XD)slnKx + (Zc+tane(0)Xc)sinK(R-x) K R b b   

sin KR (3.5) 

More generally, the solution to the differential equation for Az(x) can 

be written 

x     , 
Az(x) = atanO(x) + ßtan6(x) / r  , 

0 (tan9(x)) 

where the constants a and 3 are to be determined from the boundary conditions 

given earlier.  For very long ranges, when there are many loops in the ray, the 

integral over dx' becomes nearly proportional to x. Thus, we have, approximately. 

Az(x) = tan0(x) 
p Zs + tan9(0)Xs.      , ZR H- tan9 (R) X^ 

H  tan6(0)   A Rj I  tane(R)   / lR/- 

(3.6) 
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The quantities k and k in (3.2) are given by the internal-wave dispersion 
y   z 

relations: 

ky " kl/ 2 
(3.7) 

k = k z 
n(z) 

1  2   2 (3.8) 

2   2   2 2 
where üL = u) + n 0 .  Here n(z) is the buoyancy frequency and w is the 

inertial frequency.  The Carrett-Munk 75 model of the internal-wave spectrum is 

V» 

I&tÄi z(x)) = 8 (p2) 

(.i ?: 2 

2   3  2 2     / 2 2 
M i       i 1  /   i 

B n. 
3  k 1/ 2 2 1/2 2 

1/ " -\ 

.222 

k2 + 

• 
6(n-w)8(w-u )6| 

2 2 
10   -ü). 

(-i^) (3.9) 

This spectrum is normalized by the requirement that the parameter $ 

is 

00       00 

/ dx / dk / d. F(k>r;Z(x)) (3.10) 
0   0 

_ —.  
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Here ^0> is the mean square sound speed fluctuation at the surface 

(actually at the bottom of the mixed layer), j* is a mode number cutoff, q is 

the (sound axis value of the) acoustic wave number, n1 is the buoyancy frequency 

on the sound axis, n0 is the buoyance frequency at the surface, to is the 

inertial frequency and B I* the vertical scale depth.  Canonical numerical values 

of these are: 

U rms 9 X lO"4 
^7271 = 1.1 cph 

U =  3 
no/2lT 

to /2ir 

B 

= 

3      cph 

1/24 cph 

1 km 

The 6 functions in (3.9) limit the ranges of Integration in (3.10), and 

In particular exclude singularities at w - 0 and k = 0. 

Expressions similar to (3.10) obtain if we use, for example, u and mode 

number j as independent variables: 

a..   oo 

D(l,2) = 2 / dx I /dto ?te*li*Ml 
0   J-l 0 

[1 - costoAt    cos   (k    Ay(x)  + k    Az(x))] (3.11) 

where now we replace k and k bv 
y   z 

2    2 

k - n gH 
y   B   n0 

Again the normalization is such that 

k - ^ -S- 
z   B  n0 

-J-
2
 = / dxi / du F^fy,z(*)) 

0    J-l 0        ky 
(3.12) 

. ,   ^^^Lj^^äM^Mämmkiii^^iM 
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and, for the GM75 spectrum, we have 

B^WWF-      •ifwjmpw 

F^lizCx))  _8_  2S 

y 
i)?  .:■„.  j     | 

J-l J +J 

J i2+i2 

2..2    J  J* 

q B ui n3  L2-a)2 

2  3— i/~2—2 9 ^n-ü)) e (w-w. ) 
n0 a.   1/a)-^ 

(3.13) 

;; 

® 

IV.  INDIVIDUAL SMALL SEPARATIONS AND THEIR CONTRIBUTIONS TO D 

We are primarily interested in cases where the parameter I»2 is large, 

corresponding to the saturated or partially saturated regimes, for only here 

will there be limitations on coherence.  For this case we only need evaluate 

the phase structure function for small spatial and temporal separations, since 

the contribution of large separations in eq.(2.3) is heavily damped by the large 

2 
value of » .  When the separations are small, their effect in D is additive, so 

we may discuss each of them separately.  We shall find that the general formulae 

for D, given in the previous section, becone relatively simple when the separations 

are small, and we will end up with a rather simple analytic expression for D 

characterized primarily by coherence lengths for temporal and vertical and hori- 

zontal spatial separations.  Let us outline how this comes about. 

A.  Temporal Separations 

The general expression for D reduces to 

R       oc       ,0 

D(T) = 2  / dx / dk /du l^^Ml  (1 _ cosuT) 
0   0 

(4.1) 

For small T we replace 1 - coscoT by 1/2 u T2 so that 

D(T) = $2T2 
(4.2) 

,. 
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where I 1, defined in Ref. 1. Finally, we write this as 

fl /T, D(T) - 2^ • {j  (i\ }   , 

with v,iM coherence time X  defined simply by 

(4.3) 

@ 
T =  — 

For an axis ray, this time is1^ 

(4.4) 

,, 

r 

n 

2 2 
T      = 2^ log n1/u)l = 0.45   (hours)-2    t - 1.6 hours   . 

B-      Vertical Spatial Separations 

Here It Is most convenient to use the w-j  language: 

R       i»     oo 

D(Z) - 2 lit I    I da liB^Ml (1 . cos k      (x))     _ 
U J~l.   U y z 

(Z. the length of a vertical receiver, comes into this formula through the 

boundary conditions on Az(x)).  Here 

(4.5) 

k   = il rv(z(x)) 
B  n 0 (4.6) 

The value of using a. and j as variables is that ^  d .ends only on j, and In 

fact is simply linear in j.  Because of this fact, and because F(a),j;Z(x)) is 

proportional to l/j^2 + j2). the sum on j can be approxlmately evaluated 

analytically, we replace J by /dj. and define 
J 

00        -I     , 0° 
II :(«.VS/ dj!-*   oscrj// dU^ 1 

log —^— 

2 Ci (aj0) 

J0 

+ [cosh cxjÄ(Cl(a(J0+ljA)) +Ci(a(J0-ljA)))] 

+ i[sinh aj^SKaa^lj^)) - Si («(^-1^))) ] 
(4.7) 

where Ci and Si are the cosine and sine Integral functions. We can set i =1 
oo •J0 

here, to correspond to J ' 
j=l 

—.--^..-..J-J „,,.,..,..:• ■:,.1„;.,,.1 
, ...jaaadaitsa^i^»» 
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In terms of tl.c function I, the phase structure function can now be written 

R 

D(Z) = 2 / dx [[/ do. F(tüf2(x))] (l - I^f HM AZ(X). i)) 

(4.8) 

A simplified fpim-'la, valid for small separations, is obtained by expanding 

the function I for small Az: 

I)(Z) - 2 / dx [[ / do. -^pOOlji /|zj2[log ^+y]   t        (4>9) 
0     j y \   v/ v 

where i    is an x-dependent length defined by 

VX)   2. 
. A  |/lOg(.iA>l)     " 0 

3A     n(z(x)) 

and where y is a constant given by 

3 

(4.10) 

'v  2 
- C - log 

f i'g(j*+l) 
(4.11) 

where C - 0.577... is Euler's constant. 

The expression (4.9) for D can be evaluated analytically for a near axis 

ray.  For these rays the sound channel is nearly parabolic, and the rays are 

therefore nearly sinusoidal.  Thus (cf eq.(3.5) with 6 = 9 = Z = 0 and Z = Z) 
K    o    b R 

Az(x) - Z 
sin Kx 
sin KR (4.12) 

Using this formula in (4.9), and noting that F(k,(o;z(x)) is not a function of 

x for the axis ray, we find 

2 
D(Z) = 2$2 {j j- 

4v 
dog ^ + rv) ^  ' (4.13) 

where the coherence length ^ for this ray is 

Av     v 

(£ here is I    evaluated on the sound axis) Fnd  the constant T    is 
V V y 

rv = I + ^v " I l0S 2  • 

10 
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Numerically, we find 

V ■ 300 meters, 

and 

F = 1,49. 
v 

Eq.(4.9) for D can also be evaluated analytically for a steep ray, because 

for such rays the major contribution to the integral comes from the region near 

the ray apex. 

For a single apex, we can replace the quantity 

2 
) 

in the integrand by its value at the apex.  The remaining integral then gives 

just the parameter 2$2 evaluated in the apex approximation. Thus 

2 
D(l,2) = $2 l¥\     dog Az .   s 

— + Y, ) 
5     v 

(4.14) 

where the hat on Az and ^ indicate that they are to be evaluated at the ray 

apex (X,S).  (Note that Yv IS Independent of (x,z), so we do not have to indicate 

any special point at which it is to be evaluated.) 

For very long ranges, where a steep ray has many apexes, we -an use (3.7) 

to calculate Az.  For example, for a point source and a vertical receiver of 

height Z, 

A . .   e(x)  xZ Az(x) = e(R) T  ' 

where we have replaced tane by 9 since all angles are small, and where ZR is Z. 

With this approximation we cannot simply evaluate Az at the apex, because 

vanishes there. Rather we must average Az2 « e2 over the ray apex. This yields 

the expression 

-2 
2 1  9 

D(Z) = $ -^ 2 3 e(Rr (t): (log r + V 
"■v 

(4.15) 

11 
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where the average of 0 over an apex is 

h3    n0  lin2(S)r 
(4.16) 

where r is the radius of curvature of the ray at the apex. An obvious modi- 

fication of (4.15) gives the expression for D for arbitrary source and receiver 

separations as in eq.(3.7). 

We may put eq.(4.14) into a form parallel to eq.(4.12) by choosing 

^v      v 
e2(R) 

9 

as the coherence length for a steep ray, and 

*v 
r = Y + log T~ v   v      £v 

Numerically, for the surface limited ray, ^ = 420m and r = 3. 

C.   Horizontal Spatial Separations 

Now we have 

P(Y) = 2 / dx y  / da> ^^l^-^l  (1 - cos k Ay(x)) 

0   j-1 0       ky y 

(4.17) 

(4.18) 

(4.19) 

where 

Ay(x) = Y x/R 

for a horizontal receiver of length Y,  Furthermore, 

I 2 2 l/u) -a)T 
k = il  V L 
v   B    n„ l0 

Unfortunately, in contrast to case B, k is now not a function of j alone. An 

analytic evaluation of (4.19) can therefore not be carried very far.  It is 

still possible to carry out the sum on j, obtaining an analog of (4.8); however, 

the ü) integration is now prohibitively difficult.  As a result, simple expressions 

analogous to (4.9) and (4.13) are not now obtainable. 

12 
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Nevertheless, as we shall see in the following section, a fairly good 

(30%) analytic representation of D(Y) is 

D(Y) = 2*2 7 {(J-)2} 

where the horizontal coherence length jf is 6.4 km. 

SUMMARY 

Combining these separations we have the following simple approximate 

expression for D, valid for small separations. 

(4.20) 

9 

with T = 1.6 hours 

and for near axis rays 

and 

^v = 300 m, 

^H =-- 6.4 Km. 

r  = i.49 
V 

while for the surface limited ray. 

£, - ^0 

r = 3. 
v 

m 

13 
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V.  HORIZONTAL ARRAYS AND STATIONARY POINT SOURCES 

As an application of the results obtained so far, let us consider the case 

of a stationary point source and a horizontal linear receiver. Thus the source 

separations are all zero and XR, ZR are zero as well. Then Az(x) = 0 and 

Ay(x) = Yx/R where we write Y for YR. From eq. (3.2) we have 

R       00 aa 

D(Y.T) = 2 / dx / dk / du F^k>a)?2(x)) 
0    0     0       kv 

, 2  2 
/« -Wt  v 

il - cos^T cos (kj-ja  R )] 

to -ü). 
(5.1) 

where T = ^-t^  To illustrate what this implies we shall specialize to the 

axis ray z(x) = 0.  For this ray w ■ u., the integral on dx can be carried 

out, and we find 

■; 

D(Y.T)=2R/    dk / da *&**''  0?   [1 ~ coBatt S^M j     . (5.2) 
0    0        y kY 

The expression for D(Y,T) can be easily evaluated numerically. Fig. 4 
2 

shows the ratio D(Y,T)/2$ for various values of T as a function of Y.  Fig.5 

shows the same ratio as a function of T for various values of Y. 

Figures 4 and 5 also show lines representing fits to the exact expression 

of the form 

Pq.T)    1 T.2 , 1 .Y,2 
2      2 V'    7   W ) 

2^ 2  T    2 ^ (5.3) 

The value T ■ 1.6 hours (which we've seen in Section IV is the value of $/*) is 

imposed on the fit. The value of ^H is selected to optimize the fit and turns 

out to be 6.4 km. 
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w.«, obtaln an analytlc result for ^^ vaiues of i and Y ^^^^^ 

with coherent processing by using sq. (5.3); 

For zero integration time th^ V^0IJ„ time this yields a maximum array length of 

which for a near-axis ray gives 

MAL = 210 AiA^JSH? 
"'   R 

Similarly a maximum integration time can be obtained as 

MIT = ^ T - MAL 
* T  v 

(5.4) 

(5.5) 

(5.6) 

where 

v = — = 4 km/hr 

(5.7) 

(5.8) 

For intermediate combinations of arrav lenoth * A   ■ 
or array length and integration time limits 

may be obtained from Figures 4 and 5. 

For example, an acoustic frequency of 100 Ey   fi 
H      cy or iuu Hz (i.e., an acoustic wavelength 

of 15 m) at a range of 1000 km yields $2 = 26 2  Th. 1t  n/o.2 
MU.     The Ixne D/2$ = 27r/(56.4) = 

• 112 intersects thf> T - n 1 u ^he I - oa hours curve in „g. 4 at Y . 3.5 _  ^ ^ ^ 

VI.  MOVING SOURHRS 

*..«.«. of novi„8 sources.  For. polnc source ^ uith ^^^^ 

V ■ (VW. „e repUc. the Sourco d^nslons (^..^   by 

We shall confine ourselvPQ ^„ M,      . x  y  z 
ourselves to the case of sources moving in the horizontal plane 

and set Vz = 0. We may then distinguish two possibilities. 

15 
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A^V^^O: Source moves transverse to the line joining source to receiver. 

In this case we .ay. as in Section IV. llrait ourselves to discussing ^ 

axis ray. We then have Az(x) . o. and Ay(x) . VyT + (Y.VyT)x/R where) ^ ^ 

Section IV. Y is the hori.ontal dimension of the receiver. Thus. eq. (3.2) 

becomes replaced by 

D(V.I) - 2R / dk / „„ ZitejOi j^ _ cosuT ^ sin kY - sin kV T \ 

kY - kV T 
y )] 

For a polot receiver (V . 0) „e therefore fl„d exactly the aa^e results as 

those given 1„ Section V, hot „1th V teplaced by „ so that the „axlM 

integration tlM In this case Is (using our analytic approximation) 

(6.1) 

MIT - ^S -= T 
*  ,/ 

^ ^ 

(6.2) 

Thus the velocity of the moving source adds .uadratically to the intrinsic 

internal-wave velocity, v. to reduce the coherent Integration time. The value 

of Vy at which source motion begins to affect coherent Integration is evidently 

Vy - v = 4 km/hr.  For Y ^ 0 evaluation of eq.(6.1) must be done numerically. 

l^—Vy^O:  Source moves directly toward or  away from receiver. 

We again specially to a point receiver.  Then .y(x) . o and in calculating 

AZ(x) the boundary conditions are Az(0) = tane(0)VxT. MR) .- o.  For short 

integration times T we can add the direct effect of T and the Induced Az due 

to the source motion.  The effect of Az is given by eq. (4.8). 

Insofar as the analytic formula (4.17) is valid ma *  Kv.J./)   is valid one can estimate the maximum 
integration time T for a point receiver in ^ point receiver in the same way as in case A. with Z 

in (4.17) replaced by VxTe(0); T satisfies the equation 

?,  A
2 r/TN2  

v
x
Te(0)     v Te(0) lV + ^    dog— + r )] (6.3) 
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To estimate the value of Vx at which radial source motion begins to cut Into 

coherent Integration time. „e may Ignore the log term. The relevant velocity 

Is then evidently 

/T  e(o)T 
^ .75 km/hr 

for the surface limited ray. This velocity Is considerably smaller than the 

analogous tangential velocity, due to the fact that the shorter vertical coherence 

length (420-m as compared to 6.4 km) more than compensates for the Increase of the 

critical velocity by the factor 1/6(0) . 5. Thus for .teep rays radial source 

motion is a much more se.lous Inhibition to coherent Integration than Is 

tangential motion. 

In conclusion we should emphasize that the limitations produced by source 

motion discussed here are only those associated with internal wave induced 

fluctuations in the ocean.  There are also effects produced simply by source 

motion in the presence of many deterministic multipass.  These have recently 

been analyzed by H. Cox2).  (These deterministic multipath effects are of course 

not relevant for a stationary source.) 
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Figure Captions 

Fig. 1:  The parameter $ as a function of propagation range and acoustic 

frequency. 

Fig. 2:  Schematic plot of received intensity at a point receiver as a function 

of integration time, showing the transition between the region where 

coherent processing applies (I(T) ^ T ) and where it fails (I(T) « T). 

The time Trür/* is the intersection of the small T and large T asymptotic 

forms for I(T).  We say coherent processing is valid below this time. 

Fig. 3:  Sketch illustrating ray 1, ray 2, the mean ray, and the source and 

receiver separations projected in the vertical plane.  A similar sketch 

(with straight line rays) applies projected ia the horizontal plane. 

2 
Fig. 4:  Graphs of D(Y,T)/2* computed numerically, for various integration 

times T as a function of horizontal receiver length Y, for a flat ray 

and a stationary point source. The dotted lines show an approximate 

fit of the form D/?.$2 = | (T/T)2 f | (Y/^)2 with^ = 6.4 km and 

T = 1.6 hrs. 

8 

jl 

Fig. 5:  Same as Fig. 4 but plotted as a function of T for various values of Y. 
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